PARA GM BIOPHARMA

OARSI WORLD CONGRESS ON OSTEOARTHRITIS SPONSOR THEATRE SYMPOSIUM | MARCH 18, 2023 DR RAVI KRISHNAN | CHIEF SCIENTIFIC OFFICER DR MUKESH AHUJA | GLOBAL CLINICAL HEAD OF OA

Disclaimer

This document, together with any information communicated by Paradigm Biopharmaceuticals Ltd ASX:PAR (known as "Paradigm", "Paradigm Biopharma" or "the Company"), in any presentation or discussion relating to this document (collectively, "Information") is confidential, and has been prepared by the Company on the condition that it is for the exclusive information and use of the recipient. The Information is proprietary to Paradigm and may not be disclosed to any third party or used for any other purpose without the prior written consent of the Company.

The Information is based upon management forecasts and reflects prevailing conditions, which are accordingly subject to change. In preparing the Information, the Company has relied upon and assumed, without independent verification, the accuracy and completeness of all information available from public sources, or which was otherwise reviewed by it. In addition, the analyses are not and do not purport to be appraisals of the assets, stock or business of the Company. Even when the Information contains a kind of appraisal, it should be considered preliminary, suitable only for the purpose described herein and should not be disclosed or otherwise used without the prior written consent of Paradigm. The Information is provided on the understanding that unanticipated events and circumstances may occur which may have significant valuation and other effects.

This Company presentation contains forward-looking statements, including statements regarding anticipated commencement dates or completions dates of preclinical or clinical trials, regulatory developments and regulatory approval.

These forward-looking statements are not guarantees or predictions of future performance, and involve known and unknown risks, uncertainties and other factors, many of which are beyond our control, and which may cause actual results to differ materially from those expressed in the statements contained in this presentation. Readers are cautioned not to put undue reliance on forward-looking statements. The rate and timing of enrolment of our clinical trials and the timing of top-line results of our clinical trials should be regarded as forward-looking statements and the actual dates could differ materially from the expectations and projections set forth in Company presentations or statements especially during a pandemic.

PPS

Pentosan polysulfate

sodium is a semi-synthetic xylose-based polysaccharide (hemicellulose) that is derived from beechwood and is highly sulphated during its manufacturing process.

Pentosan polysulfate sodium for subcutaneous use (PPS, iPPS)

Pentosan polysulfate sodium 100 mg/mL solution for injection

<u>ZILOSUL®</u>

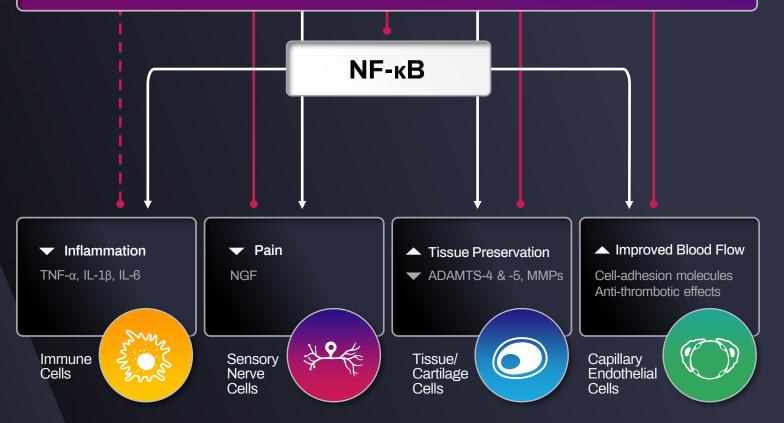
Zilosul® is the registered trademark of iPPS being studied to treat pain & function, inflammation, and cartilage degeneration in OA.

Mechanism of action

- Inhibits NF-κB-mediated activation of proinflammatory cytokines
- Inhibits the expression of the pain mediator, nerve growth factor, in osteocytes, chondrocytes, and synovial cells
- Inhibits cartilage degrading enzymes (ADAMTS4 and ADAMTS5) known to play a key role in the progression of OA and/or MPS
- Has antithrombotic, fibrinolytic, and antilipidemic effects, which may assist with improved microvascular circulation in the subchondral bone

Marketing experience

- Elmiron® (100 mg oral capsules) registered in Australia, EU, and USA for the treatment of interstitial cystitis
- Fibrase® (100 mg PPS injection) registered in Italy for thromboprophylactic action


Mechanism of Action

- Upon entry into cells PPS interacts with the transcription factor NF-κB
- PPS co-localizes with NF-κB
- Multiple modes of action

Bwalya et al 2017 PLoS ONE 12(5): e0177144.

Pentosan Polysulfate Sodium (PPS)

References: Sunaga 2012, Troeberg 2012, Bwalya 2017, Stapledon 2019, Ghosh 1999, Wu 2017, Miyata 2010, Kumagai 2010, Budsberg 2007, Kutlar 2012.

Molecular Biomarkers

DMOAD Investigation

Molecular biomarkers being evaluated for PPS as a potential disease modifying treatment for OA

Biomarker	Biological Fluids
Pro-inflammatory Cytokines	
ΙL-1 β	Synovial Fluid
IL-6	Synovial Fluid
TNF-α	Synovial Fluid
Pain Mediator	
NGF	Synovial Fluid, Serum
Joint Degradation Biomarkers	
ARGS	Synovial Fluid, Serum
TIMP-1	Synovial Fluid, Serum
CTX-I	Synovial Fluid, Serum, Urine
CTX-II	Synovial Fluid, Urine, Plasma
C2C	Synovial Fluid, Serum
COMP	Synovial Fluid, Serum
ADAMTS-4	Serum
ADAMTS-5	Synovial Fluid, Serum
MMP-3	Serum

Imaging Biomarkers

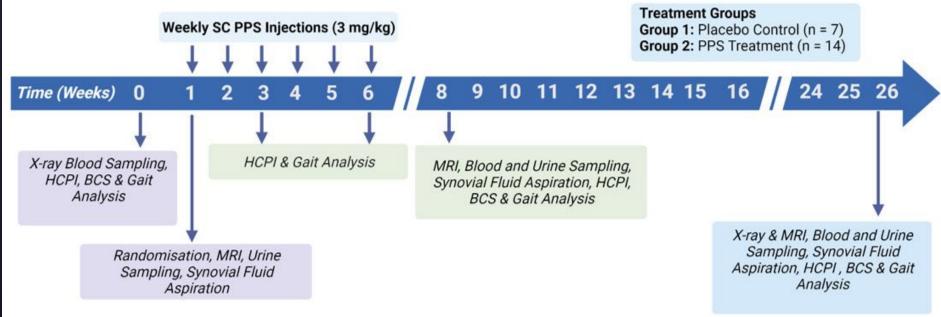
DMOAD Investigation Structural imaging biomarkers being evaluated for PPS as a potential disease modifying treatment for OA

Biomarker	Evaluated	Biomarker Pathology
Subchondral BML area and volume	MRI	Pain and cartilage degeneration
Joint synovitis / effusion volume	MRI	Inflammation and pain
Cartilage thickness	MRI	Cartilage degeneration
Bone shape / osteophytes	MRI	Adverse bone remodelling
Joint space width	MRI & X- Ray	Adverse bone remodelling

Pentosan Polysulfate Sodium

Translational Models

Osteoarthritis (OA)


- Proof of concept rodent model demonstrates biological activity of PPS in collagen-induced arthritis (CIA) model (Wijekoon et al, 2019).
- Translational canine model of naturally occurring OA demonstrates improved pain and function (Read et al, 1996).
- In two clinical studies, PPS has been shown to reduce pain and improve joint function in patients with knee OA (Ghosh et al, 2005; Kumagai et al, 2010).

Paradigm Biopharma is developing injectable PPS (iPPS) for the treatment of OA pain and as a potential disease modifying treatment for OA

Pilot Natural Canine OA Model

DMOAD Investigation

STUDY DESIGN

Pilot Natural Canine OA Model

DMOAD Investigation

DMOAD activity of PPS in Pilot Canine Model of Natural OA – Interim Data

Assessment of functional changes by gait analysis

- iPPS treatment in osteoarthritic dogs demonstrated a functional improvement in Body Weight Distribution% (BWD%) as measured by the Total Pressure Index% (TPI%).
- Seven of nine dogs treated with iPPS had a clinically meaningful improvement in the affected limb as measured by TPI% at week 8 compared to baseline
- A mean percentage change (improvement) from baseline in TPI% of 10.08% was observed for the affected hind limb (n=5) and 5.6% for the affected front limb (n=4). A mean increase of 5% in TPI% is considered to be a clinically meaningful improvement.

Pilot Natural Canine OA Model

DMOAD Investigation

DMOAD activity of PPS in Pilot Canine Model of Natural OA – Interim Data

Biomarker changes following PPS treatment at 8 weeks

- PPS treatment in osteoarthritic dogs demonstrated reduction in cartilage degradation biomarkers locally within the joint (synovial fluid) and systemically (serum).
- Data presented are change in biomarker level from baseline at week 8.
- Responders are defined as dogs that demonstrated a reduction in the level of a specific biomarker at week 8 when compared to the biomarker level at baseline.

ARG (3/4) 75% HA (4/4) 100% Serum Biomarker Responders % Responders ARG (3/6) 50% HA (5/9) 56% C3M (7/9) 78% CTX-I (6/9) 67%	Synovial fluid Biomarker	Responders	% Responders
Serum BiomarkerResponders% RespondersARG(3/6)50%HA(5/9)56%C3M(7/9)78%	ARG	(3/4)	75%
ARG (3/6) 50% HA (5/9) 56% C3M (7/9) 78%	HA	(4/4)	100%
HA (5/9) 56% C3M (7/9) 78%	Serum Biomarker	Responders	% Responders
C3M (7/9) 78%	ARG	(3/6)	50%
	HA	(5/9)	56%
CTX-I (6/9) 67%	C3M	(7/9)	78%
	CTX-I	(6/9)	67%
CTX-II (4/9) 44%	CTX-II	(4/9)	44%

Pilot Natural Canine OA Model

DMOAD Investigation

DMOAD Activity of iPPS in Pilot Canine Model of Natural OA

Study Follow-Up Report

- Recruitment for the pilot canine OA study of 20 animals has now been completed
- The longer follow-up period at week 26 (equivalent to 3 years in human terms) will allow for collective analyses of pain, function, joint structure, and biomarker levels following iPPS therapy, and will provide informative data to assess the potential of iPPS as a DMOAD.
- The complete study report examining both week 8 and week 26 responses in the final cohort of dogs will be reported in 1H CY2023.
- This pilot study will be extended to an additional number of 40 dogs to support clinical submissions to regulatory bodies for potential DMOAD claims for PPS.

Clinical Program

6 weeks treatm duration in all C

studies

OA Clinical Development

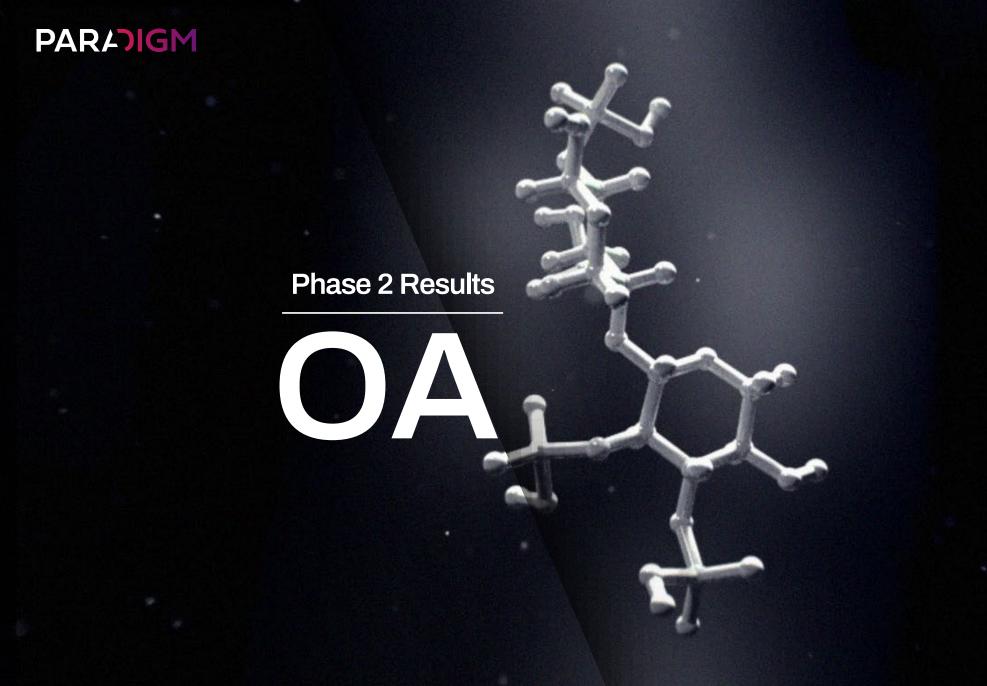
	Study	Objective	Status
	005	To evaluate the effects of PPS on knee OA pain, function, and disease modification biomarkers at Day 53	Complete
	008	To evaluate the effects of PPS on knee OA pain, function, and disease modification biomarkers up to Day 365	Ongoing
nt	002 / 003	To provide evidence of effect for treatment of pain and improvement of function knee OA at Day 183	002 Enrolling
	006 / 007	To evaluate the duration of treatment effect and safety up to 52 weeks from the last treatment in the parent study (002 / 003)	006 Enrolling
	009	To establish efficacy and safety data to support repeat dosing in the label.	Planned
	010	To establish efficacy and safety data to support adding Hip OA to the label.	Planned

Timelines based on enrolment projections and may be subject to change.

Potential Disease Modifying Osteoarthritis Drug

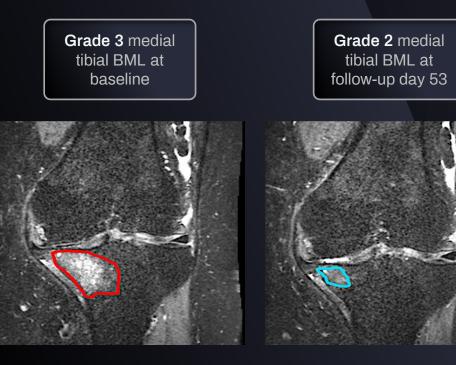
Current programs investigating Zilosul[®] as a potential DMOAD

PARA_005 – Australia (completed)

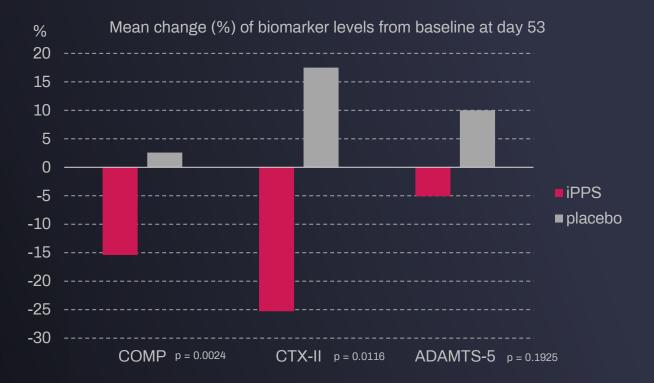

- Phase 2 efficacy and safety study
- 126 participants randomized to iPPS or placebo.
- 2mg/kg PPS twice weekly for 6 weeks vs placebo
- Serum: ADAMTS-4, ADAMTS-5, MMP-3, CTX-I, COMP
- Plasma: CTX-II
- Urine: CTX-I, CTX-II
- MRI: Subchondral BML area and volume, synovitis, joint effusion

PARA_008 – Australia (ongoing)

- Phase 2 exploratory study assessing change from baseline in multiple biomarkers associated with disease progression of OA.
- 60 participants randomized to iPPS or placebo.
- 2mg/kg ideal body weight (IBW) twice weekly, 2mg/kg IBW once weekly plus placebo once weekly or placebo twice weekly for 6 weeks
- Synovial fluid: IL-1β, TNFα, IL-6, NGF, COMP, CTX-I, CTX-II, C2C, ADAMTS-5, aggrecan ARGS fragment, TIMP-1
- Serum: COMP, ADAMTS-5, aggrecan ARGS fragment, TIMP-1, CTX-I, C2C
- Urine: CTX-II
- MRI: Subchondral BML area & volume, synovitis, joint effusion, cartilage thickness, bone shape, joint space width


PARA_002 – Global (enrolling)

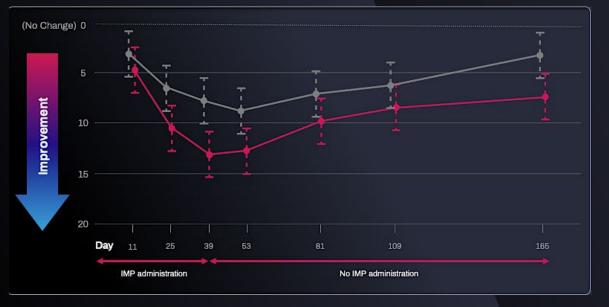
- Pivotal phase 3 study
- 900+ participants randomized to iPPS or placebo.
- 1.5 mg/kg IBW PPS twice weekly; 2.0 mg/kg IBW PPS once weekly + placebo once weekly; 100 mg PPS if <65 kg IBW, 150 mg PPS if ≥65 to ≤90kg IBW, or 180 mg PPS if >90 kg IBW once weekly + placebo once weekly; placebo twice weekly for 6 weeks
- MRI: Subchondral BML area and volume, synovitis, joint effusion, cartilage thickness, bone shape, joint space width


PARA_OA_005 Exploratory Endpoints

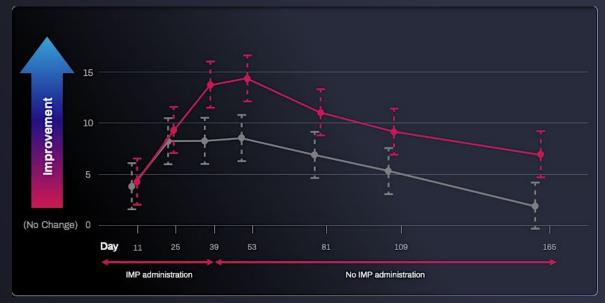
• MRI analysis showed that iPPS group had statistically significant **BML regression** in the Medial femur (p=0.02) and Medial compartment (p = 0.03)

Study population: Mean age 57.5 (range: 40-75 years), 65% males, BMI up to 35, OA history mean 9.9 years, 82% with K-L Grade 3 or 4, mean baseline KOOS pain 44.

- iPPS showed significantly reduced serum levels of cartilage degradation biomarkers COMP, ADAMTS-5 & urine levels of CTX-II.
- A single measurement of increased COMP predicted subsequent cartilage loss on MRI in symptomatic knee OA subjects (Hunter et al. 2007).



PARA_OA_005 Clinical Endpoints


Pain Reduction (KOOS)

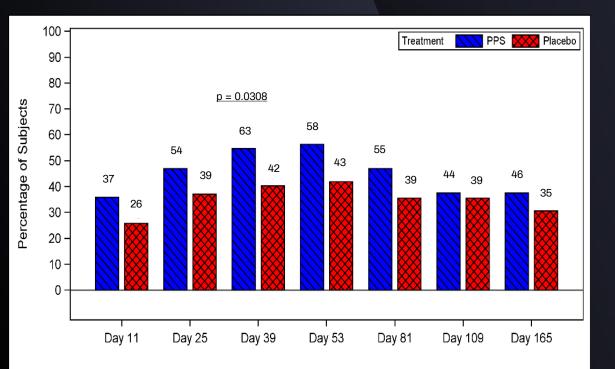
Adjusted mean change from baseline to days 11, 25, 39, 53, 81, 109, and 165.

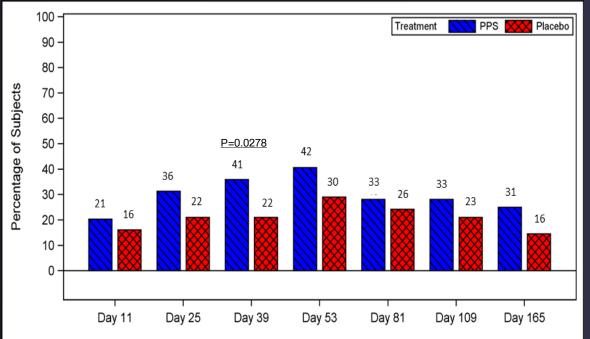

KOOS Function (ADL) Adjusted mean change from baseline to days 11, 25, 39, 53, 81, 109, and 165

LS mean change +/- standard error FAS = Full analysis set

Patient Global Impression of Change (PGIC)

• Mean PGIC significantly higher in the iPPS group than placebo group at day 53 (4.42 versus 3.42, respectively; mean difference between iPPS and placebo 1.0 [95% CI 0.24, 1.8]; p=0.0106).


PARA_OA_005 Clinical Endpoints



KOOS Pain: Proportion of participants with 25% Pain Reduction

KOOS Pain: Proportion of participants with 50% Pain Reduction

Biomarker Study

PARA_OA_008

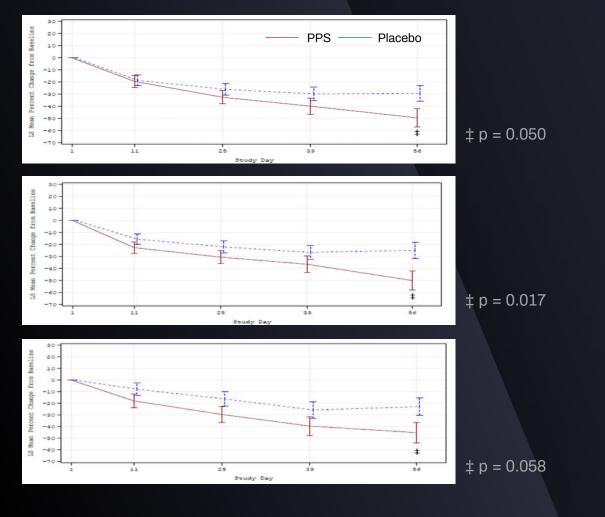
An exploratory phase 2, randomised, double-blind, placebo-controlled study to evaluate the treatment effect of pentosan polysulfate sodium compared with placebo on synovial fluid biomarkers in participants with knee osteoarthritis pain. 61 participants (1:1:1).

- PPS twice weekly: 2.0 mg/kg IBW PPS twice weekly for 6 weeks
 PPS once weekly: 2.0 mg/kg IBW PPS once weekly + placebo (0.9% saline) once weekly for 6 weeks
 Placebo: placebo (0.9% saline) twice weekly for 6 weeks
 Primary
 Effect of PPS on synovial fluid biomarkers associated with inflammation and OA disease progression (Day 56).
- Key•Correlation between synovial fluid biomarkers and clinical outcomesobjectives(Day 56 and Day 168)
 - Effect of PPS treatment on synovial fluid, serum and urine biomarkers associated with inflammation and OA disease progression in participants with knee OA pain (Day 56 and Day 168)
 - Effect of PPS on improvement in WOMAC pain, function, and stiffness in participants with knee OA pain (Day 56, Day 168 and Day 365)
 - Structural imaging objectives and endpoints (Day 168)

Synovial Fluid Biomarkers

PARA_OA_008

DAY 56 TOP-LINE RESULTS


The synovial biomarker changes in iPPS-treated subjects at day 56 were favourable overall compared to placebo control.

Synovial Biomarker	iPPS compared to placebo	Biomarker Function
NGF	Reduced	Pain mediator
IL-6	Reduced	Pro-inflammatory cytokine
TNF-α	Reduced	Pro-inflammatory cytokine
COMP	Reduced	By-product of cartilage degradation
ARGS	Reduced	By-product of cartilage degradation
TIMP-1	Increased	Endogenous inhibitor of cartilage degradation

ARGS = Aggrecan amino acids alanine, arginine, glycine, and serine; COMP = cartilage oligomeric matrix protein; IL-6 = Interleukin-6; NGF = nerve growth factor; TIMP-1 = tissue inhibitor matrix metalloproteinase 1; TNF- α = tumor necrosis factor alpha.

PARA_OA_008: Clinical Endpoints

Percentage Change from Baseline in WOMAC NRS 3.1 Index Pain, Function and Stiffness Subscale

DAY 56 TOP-LINE RESULTS – CHANGES IN WOMAC PAIN, FUNCTION AND STIFFNESS FROM BASELINE

- Participants in the study were asked to provide baseline pain scores using the WOMAC NRS 3.1 Index.
- Study population: OA history mean 6.8 years, 80% with K-L Grade 3 or 4, mean baseline WOMAC pain 6.7.
- iPPS treatment showed statistically significant improvements at day 56 in pain, function, stiffness, and overall WOMAC scores for twice-weekly iPPS compared to the placebo arm.
- The proportions achieving ≥30% and ≥50% improvement in pain were 73% and 60%, respectively.
- The responses in pain for iPPS-treated subjects are consistent with the clinical effects observed in this and prior studies of iPPS in osteoarthritis.

Pentosan Polysulfate Sodium

Safety Profile

Over 800 people have been treated with iPPS in the clinical and early access programs.

Very common or common adverse events (AEs) observed in Paradigm clinical studies:

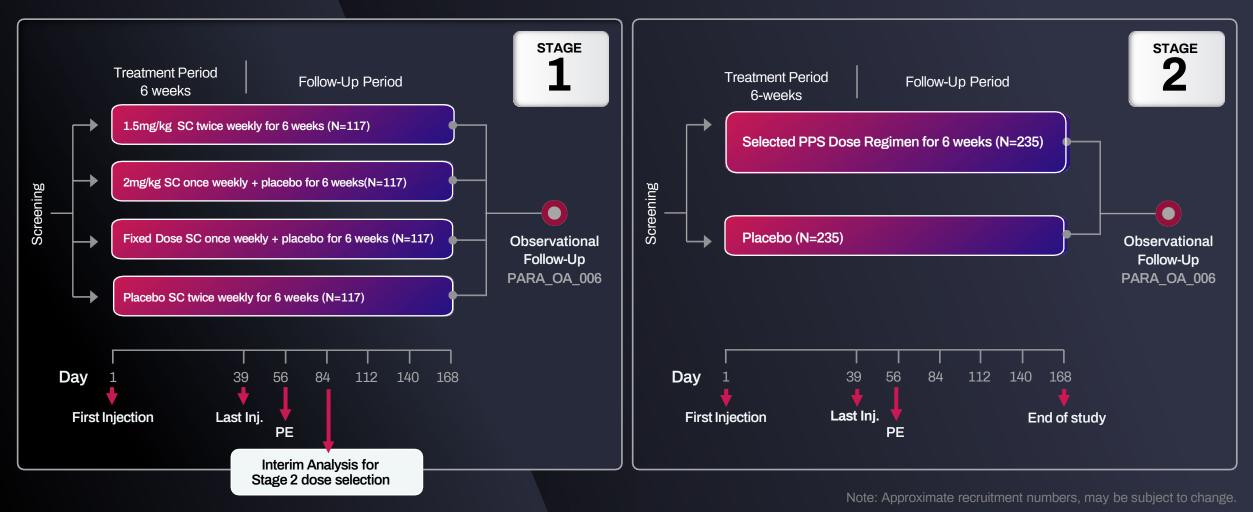
• Injection site reactions (bruising, erythema, pain, pruritus, swelling) and headaches, which were mild and self-limiting

Other adverse events:

 Thrombocytopenia, including heparin-induced thrombocytopenia. Has been observed in <2% of patients in Paradigm clinical studies and managed access programs.

Other relevant information:

- Pigmentary maculopathy has been observed following longterm cumulative dosing of oral PPS.
- It has not been observed with iPPS in the Paradigm clinical and nonclinical programs. It is being monitored in the phase 3 iPPS program.


Phase 3 Program

PARA_OA_002

Phase 3 Trial Design – Primary Endpoint: WOMAC Pain and Function

PARAJIGM Osteoarthritis - Global Phase 3 Enrolment

- Harmonized clinical protocol to achieve simultaneous registration in key jurisdictions
- 120+ sites planned across the US, EU, UK, Canada and Australia

PARA_OA_002 Global Progress

USA

- Fast Track Designation
- 76 active sites
- 14 sites selected
- US enrolling

Australia

- 4 active sites
- 12 sites selected
- AU enrolling

UK and Europe

- 1 active site
- 12 sites selected
- UK enrolling

Canada

- 5 active sites
- 6 sites selected
- CA enrolling